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Photoelectron angular distributions of excited atoms in intense laser fields
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Angular distributions of photionization differential rates for an atom in arbitrary excited states
ionized by intense laser fields with arbitrary polarization are reported. Relativistic effects are in-
corporated into the Keldysh theory, yielding new semi-analytical expressions of ionization rates
for hydrogenic initial states in intense linear, circular and elliptical laser polarizations. Angular
distributions are compared for different angular momentum quantum number, magnetic quantum
number and Keldysh parameter γ. The angular distributions are shown to depend strongly on γ,
thus also reflecting the influence of relativistic effects. The sign of the magnetic quantum number,
corresponding to different electron rotations, is shown to have a significant effect on photoelectron
angular distributions in circularly-polarized laser fields.

I. INTRODUCTION

The study of intense laser-matter interactions and at-
tosecond [1, 2] physics over the past two decades has at-
tracted significant attention. Advancement in the study
of electron dynamics [3] in intense laser is based on non-
perturbative theory and involves understanding of the
physical processes such as tunnelling ionization (TI),
multiphoton ionization (MPI) [4], above threshold ion-
ization (ATI), high harmonics generation (HHG) [5–9],
etc.

The tunnelling ionization concept by P. B. Corkum
[4] provides classical description of the electron dynamics
that forms the basis for understanding the high harmonic
generation. The model was used to describe electron in
the strong electromagnetic fields, first tunnels to the con-
tinuum and recollides with the parent ion, emitting pho-
ton that has a maximum energy, Nm~ω0 = Ip + 3.17Up,
where Nm is the number of incident photons. The ATI
spectra depends on polarization, with circularly polar-
ized pulses giving 2Up of maximum energy [10]. Further
extension by M. Lein incorporates recolliding electrons
for molecular imaging [11, 12] and spectroscopy [13] thus
providing the important applications for the development
of the intense light matter interactions [14, 15]. In the
study of recollision processes with circular pulses it is
shown that there are a few rules of thumb which apply
to systems more complex than atoms [16]. Analytical
formula obtained for HHG [17] enhances the understand-
ing of the nonperturbative strong field processes. It is
found that static electric field can induce new effects like
dichroicism and ellipticity in HHG [18]. A scheme us-
ing combination of HHG and terahertz field to generate
a single circularly polarized attosecond pulse was first
proposed by Yuan and Bandrauk recently [19].

There are efforts for generalizing the Keldysh theory
[20–22] to arbitrary internal states such as the well known
ADK [23] (Ammosov, Delone and Krainov) theory that
expressed the probability of tunnelling ionization in an
alternating field, of a complex atom and of an atomic ion.
It is based on the result of Perelomov, Popov and Ter-

ent’ev [24]. Their works use the generalized asymptotic
wavefunction to obtain the final photoionization rate for
arbitrary values of n,l,m in an electric field of arbitrary
ellipticity, where n, l and m are the principle, the orbital
angular momentum and azimuthal or magnetic quantum
numbers, respectively. It is found that the ionization rate
depends on the sign of m [25]. However, the calculation
of the atomic ionization rate which involves averaging the
laser fields over one period of oscillation is valid only in
the low-frequency limit of the electromagnetic fields or
TI regime, namely ω ≪ ωt, where ωt = 1/τt and τt is
the tunnelling time as in mentioned in Keldysh work.

FIG. 1: (Color online) Atomic scheme showing atoms initially
prepared in several internal states (top panel) and a particular
state (bottom) before photoionization.

The theory of Keldysh, despite being perturbative has
its appealing features, such as providing analytical ex-
pressions for certain cases of study. His adiabaticity
parameter, γ =

√

Ip/2Up determines whether the pho-
toionization is in the TI regime or the MPI regime,
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where Ip is the ionization potential of the atom and
Up = e2E2/4mω2 is the ponderomotive energy. Typ-
ically, for high frequencies and weak fields or when the
ponderomotive energy is lower than the ionization poten-
tial, the MPI process becomes dominant where k number
of photons are absorbed simultaneously during the tran-
sition from ground level to the continuum level. The tun-
nelling ionization regime corresponds to the the opposite
case of high fields and low frequencies.
The Keldysh’s formalism [26] is valid only for small

momenta i.e. the terms higher than p2/
√

2mIp are ne-
glected. Our recent work provides exact evaluation of
photoionization rate [27] for photoelectron with arbitrary
momentum using the Keldysh-type formalism that is per-
turbative and approximate. However, the theory is valid
for hydrogenic atom in the ground state only. Besides, it
is limited to non-relativistic regime. In view of the photo-
electric effect, this means that when the photon energy
far exceeds the ionization threshold, the photoelectron
would be relativistic. Relativistic theory of photoioniza-
tion has been used along with the R matrix approach
[28] but has not been adopted along with the Keldysh
theory. Our work may be relevant to Brabec’s analytic
tunnel ionization rates for hydrogen-like ions obtained us-
ing semiclassical solution of the three-dimensional Dirac
equation [29].
Here, we focus on the simple relativistic corrections to

the Keldysh and strong field approximation (SFA) the-
ories, which neglects the intermediate levels involved in
resonant or near resonant transitions that may create co-
herent superpositions of bound states. This is justified
for the following reasons. First, states above our initial
excited states are completely ionized due to their smaller
ionization potentials and therefore not contributing to
Stark effects, etc. Second, states lower in energy, such
as the ground state will also be unimportant as they are
nonresonant in the dynamics because excited states have
large ionization rates and small lifetimes. Third, we are
considering ionizing laser with frequencies that are off-
resonant from any bound-bound transition or any excited
state. Thus, the main dynamics is described mainly by
ionization either by tunnelling or above barrier ioniza-
tion. An example of the work that neglects the resonant
transitions is by Liu and Nisoli [30] where they consid-
ered the 2p excited state of He+ treated in SFA approx-
imation to study polarization of its harmonics in strong
fields without concern of coupling to higher nor ground
states. Similarly, Starace and coworkers considered an
initial excited atom, namely the p-state, in obtaining an-
alytical formula for HHG with elliptically polarized laser
fields [13].
In this paper, we present the generalization of the per-

turbative formalism to arbitrary initial excited states of
a hydrogenic atom with relativistic kinetic energy and
vectorial momentum of the photoelectron. Using semi-
analytical expressions we compute and compare the an-
gular distributions of the photoionization rate for lin-
ear and circular laser polarizations with arbitrary ex-

cited atomic states of different quantum numbers, n, l,m.
This enables us to systematically study the effects of rel-
ativistic photoelectron and atomic polarization in excited
states on photoionization. It is helpful not to underesti-
mate our choice of hydrogenic atom, since the wavefunc-
tions for the quantum states n, l,m are known analyti-
cally, the results can be interpreted more easily to pro-
vide clearer insights than using more complicated atoms
or molecules. Likewise, actual energy levels with spin-
orbit coupling and other relativistic interactions [31] can
be included when precision is required. The relativistic
photoionization rate is presented in Sec. II and the ma-
trix elements for arbitrary excited state is calculated in
Sec. III. The results are shown and discussed in Sec. IV.

II. PHOTOIONIZATION RATE FOR EXCITED

ATOM

The photoionization is performed on an ex-

cited atom using a

(

linear
elliptical

)

polarized in-

tense laser field E = E

(

ẑ cosωt
(α cosωt, β sinωt, 0)

)

and E · r =

(

Er cos θ cosωt
Er sin θC(t, φ)

)

, where C(t, φ) =

α cosωt cosφ + β sinωt sinφ with the coefficients α and
β determine the ellipticity ǫ = α/β of the laser field.
The general photoionization rate of (as shown in our
previous result) is defined as:

w =
m

(2π~2)2

∫ 2π

0

∫ π

0

∞
∑

k=k0

|L (pk)|2 pk sinΘdΘdΦ, (1)

with the threshold index k0 = 1
~
(In + Up) and

L (pk) =
1

2π

∫ T/2

−T/2

V0(Π(t))eiS(p,t)e−i(Ω−kω)tωdt

=
1

2π

∫

V0 (Πk (u))√
1− u2

eiS(pk,u)du (2)

=
1

2π

∫ π

−π

V0 (Π (s)) exp iS (pk, s) ds,

with u = sin s and s = ωt, Ωn(p) =
1
~
(K0 + In + Up) , In = I0/n

2 is the ionization energy

from level n, K0 = c
√

p2 +m2c2−mc2 is the relativistic

kinetic energy and Up = c〈
√

(eA(t))2 + (mc)2〉 −mc2 =

c
√

1
2 (eA)

2 + (mc)2 − mc2 with A = E/ω is the

relativistic ponderomotive energy [32] taken as the
time-averaged 〈..〉 of the term involving the vector

potential A(t) = −
∫ t

0 E(t′)dt′.
Here, S (p, s) represents the action phase during the

photoionization,
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S (p, t) =
1

~

∫ t

0

[In +K(τ)]dτ = Ωn(p)t+
1

~

∫ t

0

[K(τ)−K0 − Up]dτ (3)

which is computed by numerical integration since it is not possible to obtain an analytical expression.
For the nonrelativistic case, Eq. (3) reduces to

S(p,u) → Ωn(p) sin
−1 u

ω
+

1

~ω

(

− eE
mωpz(

√
1− u2)− Upu

√
1− u2

− eE
mω [

(α+α∗)
2 px(

√
1− u2) + (β+β∗)

2 pyu]− Up(|α|2 − |β|2)u
√
1− u2

)

(4)

where the arrow signifies the nonrelativsitic limit.

Although we are studying the relativistic effects on
the the photoionization, we may use the nonrelativistic
Schrodinger equation and neglecting corrections to the
dipole approximation based on two recent reports. To
first order the electrons velocity v only depends on the
electric field. According to ref. [33], the second order
correction leads to a magnetic field B=ê × E/c and a
ponderomotive gradient dUp/dz. The first scales as 1/c
whereas the gradient of Up will be negligible for long
wavelength (adiabatic) pulses.

M Klaiber et al [34] showed that the magnetic correct
is responsible for a momentum shift Ip/3c. Thus for ex-
cited states with small Ip this is neglibile. Therefore, in
comparison to excited Ip,s, the ponderromotive energies
will be much larger, thus necessitating a more accurate
treatment.

Besides, we may use the nonrelativistic Schrodinger
equation since the relativistic corrections are mainly
causing the energy shift of bound levels such as the spin-
orbit interactions which only introduce negligible quan-
titative effect on the photoionization process.

The relativistic corrections to the ponderomotive po-
tential, despite being small, are more important than
other relativistic corrections because the ponderomotive
potential appears in the phase factor or the action part
S through the Volkov wavefunction that is sensitive to
the photoionization time scale and therefore would have
significant impact on the behaviour of photoionization.

The atom-light interaction is taken in the nonrelativis-
tic dipole form E · r within dipole approximation. The
spatial dependence of the electric field is neglected and
contains only the time dependence sin(ωt) or cos(ωt) as
we assume the wavelength of interest is not too short but
longer than hard X-ray or gamma ray and much larger
than the atomic dimension of 0.1 nm,

The transition matrix element V0 (Π (x)) corresponds
to the transition of the photoelectron from initial
state ψs (r) to the continuum Volkov state ψp (r, t) =

exp
{

i
~

[

Π (t) · r−
∫ t

0
K (τ) dτ

]}

with Π (t) = mv =

p+eA (t), and K (τ) = c

√

Π(τ)
2
+m2c2−mc2 → Π(τ)2

2m

i.e.

V0 (t) = eE

∫ ∫ ∫

ψs (r) r

(

cos θ cosωt
F (t, φ) sin θ

)

e−iΞr2drdΩ

(5)
where dΩ = sin θdθdφ and

F (t, φ) = (α cosωt cosφ+ β sinωt sinφ) (6)

Ξ(r, θ, φ, t) =
1

~
Π(t) · r = B(θ, φ, t)r (7)

B(θ, φ, t) =
1

~
(Q (φ, t) sin θ + P (t) cos θ) (8)

with the integration over the radial part that consists of

P =

(

pz − eEω sinωt
pz

)

(9)

Q =

(

px cosφ+ py sinφ
(px − eE

ω α sinωt) cosφ+ (py +
eE
ω β cosωt) sinφ

)

(10)

However, the angular dependence of the photoioniza-
tion rate is obtained by differentiating Eq. 1 with respect
to the polar angle Θ and azimuthal angle Φ

dw

dΩa
=

m

(2π~2)
2

∞
∑

k=k0

|L (pk)|2 pk. (11)

III. TRANSITION MATRIX ELEMENT FOR

ARBITRARY INITIAL STATE

Here, we focus the study on how the angular distri-
bution depends on individual initial state (a particular
nlm) first before exploring the more elaborate situations
of atomic gas in many excited states. Atomic gas in single
excited state can be realized by preparing the atoms pre-
dominantly in a single chosen excited state by standard
optical pumping technique by narrow band lasers with
certain polarizations, as used for atomic spectroscopy and
laser cooling [36]. We illustrate this realization in Fig.
1. Photoionization with atom in initial excited state has
been studied by Bauer [37] who found additional peaks
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in the photoelectron spectra for initial state in n = 2 but
neglecting the magnetic quantum number m.
The general hydrogen wavefunction is considered,

ψs (r) = ψn,l,m (r) = Rnl (r)Y
m
l (θ, φ) with normaliza-

tion
∫

|ψ0 (r) |2d3r = 1. The radial wavefunction defined

as Rnl =
√

(2ρ)
3 (n−l−1)!

2n[(n+l)!]3 e
−ρr (2ρr)

l [
L2l+1
n−l−1 (2ρr)

]

with ρ = 4π2µe2Z
nh2 = Z

na0
and the angular wavefunction is

defined as Y m
l (θ, φ) = σ

√

(2l+1)
4π

(l−|m|)!
(l+|m|)!e

imφPm
l (cos θ),

where L
(a)
n (x) =

n
∑

j=0

(−1)
j

(

n+ a
n− j

)

xj

j! is

the associated Laguerre polynomials, σ =
{

(−1)
m

if m ≥ 0
1 if m < 0

}

is the piecewise function,

Pm
l (x) = (−1)m

2ll!

(

1− x2
)m/2 dl+m

dxl+m

(

x2 − 1
)l

is the
associated Legendre polynomials.
Hence, the transition matrix element of the initial state

of arbitrary energy level to the continuum Volkov state
is redefined as

V0(p) =

∫

ψs(r)eE ·r exp(− i

~
p · r)d3r = eE · i~∇pψ̃s(p)

(12)
The goal of evaluating the matrix element V0 (Π (t)) can
be done by direct integration

V0 (Π) =

∫ ∞

0

∫ π

0

∫ 2π

0

e−iΞeE · rψn,l,m (r) r2drdΩ

= Anlm

∫ π

0

∫ 2π

0

Znlm (t, θ, φ) dφdθ (13)

Znlm (t, θ, φ) = Wnl (t, θ, φ)Clm (t, θ, φ) (14)

with the coefficient factor varying with the different nlm,

Anlm =
(na0

2

)5/2

eEσ

√

(n− l − 1)!

2n[(n+ l)!]3
(2l+ 1)

4π

(l − |m|)!
(l + |m|)!

(15)
and the function that depends on time and angles θ, φ

Clm (t, θ, φ) =

(

cosωt cos θ
F (t, φ) sin θ

)

Pm
l (cos θ) eimφ sin θ.

(16)
The integration over r can be rewritten in dimension-

less quantities x = 2r/na0 and q = (iBa0n+ 1)/2 as

Wnl (t, θ, φ) =

∫ ∞

0

xl+3L2l+1
n−l−1 (x) exp [−qx] dx (17)

Using the identity
∫∞

0 e−sxxβLα
m (x) dx =

Γ(β+1)Γ(α+m+1)
m!Γ(α+1) s−(β+1)F (−m,β + 1;α + 1; 1

s ) we

have the exact expression

Wnl (t, θ, φ) = Wnlq
−(l+4)F (−(n− l− 1), l+4; 2l+ 2;

1

q
)

(18)
where Wnl =

Γ(l+4)Γ(l+1+n)
(n−l−1)!Γ(2l+2) .

For linear polarized the integration over φ has the form
∫ 2π

0 exp
[

−i 1
~
(px cosφ+ py sinφ) sin θr

]

eimφdφ while for

elliptical polarized,
∫ 2π

0 (sinφ or cosφ) exp[A cosφ +

B sinφ]eimφdφ. If we neglect px and py for linear po-
larized the matrix element is finite only for m = 0 since
∫ 2π

0 eimφdφ = 2πδm,0. This gives

V0 (Π (t)) = 2πAnl0 cosωt

∫ π

0

Wnl (t, θ)Cl0 (t, θ) dθ

(19)

where Anl0 =
(

na0

2

)4
eE

√

(

2
na0

)3
(n−l−1)!
2n[(n+l)!]3

(2l+1)
4π .

For nlm = n00 the integration over r becomes

W (t, θ, φ) =
Γ(4)Γ(n+ 1)

(n− 1)!Γ(2)
q−4F (1− n, 4; 2;

1

q
) (20)

= 32n[3n2(iBa0 − 1)2 + 1− n2]
Λn−3
−

Λn+3
+

where Λ± = (iBa0n ± 1)/2 with P 0
0 (cos θ) = 1 and

An00 =
(

na0

2

)4
eE0

√

1
4π

(

2
na0

)3
(n−1)!

2n[(n+l)!]3 . For state

|n00〉 the result Eq. (18) corresponds exactly with Eq.
(20).

For n = 1 and linear polarized, B = 1
~
[(px cosφ +

py sinφ) sin θ + (pz + eEω sinωt) cos θ]. So far in many
existing works and our previous work, px and py were
neglected so there were no dependency on φ and we re-
cover the known result V0 (Π (t)) = 64πAnlm3 cosωt

∫ π

0

cos θ sin θdθ
(iBa+1)4

= −i2π (2a0)4 eE
√

1
πa3

0

a0Pz
~

cosωt

(1+(
a0Pz

~
)2)

3 . Thus,

our present formalism is generalized to include the trans-
verse momentum px and py. Hence, the φ integration is
present and has to be done numerically.

The matrix element for general nlm is evaluated from
a semi-analytical expression through numerical integra-
tions over θ and φ.

V0 (Π (t)) = −Bnlm

∫ 2π

0

∫ π

0

q−(l+4)F (l + 1− n, l + 4; 2l+ 2;
1

q
)

(

cosωt cos θ sin θ
F (t, φ) sin2 θ

)

Pm
l (cos θ) eimφdθdφ (21)

where Bnlm = AnlmWnl. The integration over φ has to be done numerically due to the dependence on φ in B
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or finite values of px and py. Equation (21) is a general
semianalytical formula convenient to compute the pho-
toionization rate versus angle of observation Θ for differ-
ent initial states. It is valid for both linear and elliptical
polarizations.

IV. RESULTS AND DISCUSSIONS

We have plotted the angular distributions of
the differential photoionization rate dw/dΘdΦ =

m
(2π~2)2

∞
∑

k=k0

|L (pk)|2 pk sinΘ using Eq. (1) at Φ = 0

for linear and circular polarizations with relativistic and
non-relativistic results in Fig. 2. The L (pk) is calcu-
lated using Eq. (2) which contains the action S given
by Eq. (3) and V0 given by Eq. (21). (All figures are
reported in V/cm for electric fields E and s−1 for fre-
quencies for which E(1au) = 5.14× 109V/cm, ω(1au) =
2πf = 4× 1016s−1)[38].
The four scenarios of high/low E and ω for n, l,m =

3, 0, 0 show that the relativistic and non-relativistic re-
sults agree very well only for sufficiently small relativis-

tic Keldysh parameter γ =
√

Ip/2Up ≈ ω
E

√

2mIp
e2 , as in

the case Fig. 2c where the fields are strong at low fre-
quencies. At high frequencies and even with low fields,
the relativistic effect is significant, as clearly shown in
Fig. 2b. This also provides good results on the rela-
tivistic photoelectric effect where larger photon energy
translates to photoelectron with higher speed. Thus, in
the case of larger γ, the photoelectron emission probabil-
ity is much smaller than in the non-relativistic case and
the case of small γ.
Lets analyze the angular distributions of photoelectron

from different orbitals in the excited states. For linear
polarized (Fig. 3), the angular distributions do not de-
pend on the sign of the magnetic quantum number, m.
For circular polarized (Fig. 4), the emission profiles are
different for +|m| and −|m| although the shape looks
identical, for γ ≃ 0..4 (< 1). For γ > 1, however, the
shapes are different for positive and negative m, such as
additional more rounded lobes for positive m, connected
to recent results [25]. In general, the lobes for linear
polarization are almost complementary to the lobes for
circular polarization, i.e. the minimum in linear case cor-
responds to the maximum in circular case and vice versa.
For linear polarized with m = 0,±2 the photoelectron
emission rate is the highest mainly at around Θ = π/2
and it reduces with l. For m = ±1, there is zero emission
towards Θ = π/2. This result is counter-intuitive as one
would expect that higher excited state would be more
likely to be ionized and the electron is ejected predomi-
nantly along Θ = 0. For circular polarized (Fig. 4) with
m = 0, the are emission is highly directional with twin
peaks close to Θ = π/2.

Now we look at the angular distributions in excited
states for different values of Keldysh parameter γ. We

plotted the angular distributions of spherically symmet-
ric states |n00〉 with n = 1 to n = 4 in Figs. 5 and
6 for linear and circular polarizations, respectively. For
γ >> 1, multiphoton ionization (MPI) regime, the pho-
toelectron emission basically follows the direction of the
linear polarized electric field, and close to the field direc-
tion of the circularly polarized light, especially for higher
excited levels where the ionization energies are smaller.
For γ ∼ 1 the photoelectron can be emitted into several
other directions, especially for lower levels. For γ << 1,
tunnel ionization (TI) regime, photoelectron is emitted
into multiple discrete directions as in ref. [35], and it be-
comes hard to distinguish the angular distributions be-
tween linear from circular polarized lights. The increased
isotropy in the emission reflects the nature of tunnelling
process, which is probabilistic.
The general trend shown in Figs. 5 and 6 is that the

emission rates are typically much larger for linear po-
larization and the rates increase with the electric field.
But the angular distributions do not change significantly
with the electric field strength. The photoionization rate
increases with the initial state n up to n = 3 and then
reduces for larger n. The shape is cosΘ-like for linear
case and sinΘ-like for circular polarization case to unidi-
rectional, bidirectional close to Θ = π/2± ǫ, where ǫ is a
small positive value.

A. Case of initial superposition of states

In regular atomic gas the atoms are in more than one
initial states. We may consider initial superposition of
states instead of a single quantum state, coupled by the
intense laser with power broadening effect or broad band-
width of laser pulse. Then, the initial atomic state be-
comes a superposition of all the angular momenta l and
magnetic sub-states m, i.e. ψn,l,m (r) would be replaced
by

ψn (r) =

l
∑

m=−l

n−1
∑

l=1

cnlmψn,l,m (r) (22)

where
l
∑

m=−l

n−1
∑

l=1

|cnlm|2 = 1. The matrix element Eq. (13)

becomes

V0 (Π) =

l
∑

m=−l

n−1
∑

l=1

cnlmAnlm

∫ π

0

∫ 2π

0

Znlm (t, θ, φ) dφdθ

(23)
The eigenenergy that includes the effects of
fines structure interaction is given by Enj =

− |In|
[

1 +
(

Zα
2n

)2
(

4n
j+1/2 − 3

)]

where In = −Z2

n2 I0,

I0 = hcR∞ = α2mec
2

2 . = 13. 6 eV and |l− 1
2 | 6 j 6 l+ 1

2 .
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Except for spectroscopic purposes, the spin-orbit split-

ting can be neglected and we just use Enj ≃ −Z2

n2 13. 6
eV for all states within the same n.
To show the effects of superposition of states and in-

dependent sum of probabilities of those states, we per-
form simulations for n = 2 with l = 0,m = 0 and
l = 1,m = −1, 0, 1. Figure 7 shows that the angular
distribution assumes a more rounded shape, combining
the features of all the magnetic substates. For circular
polarization, the X-shape distribution in Fig. 7b from
m = ±1 is so strong that it stands out of the superpo-
sition with the m = 0. However, typically information
from the substates cannot be extracted effectively when
the initial state is composed of many states. Therefore,
more useful information can be obtained if the atoms are
prepared in a singlem state, corresponding to left or right
rotation, as shown in [25], which enables the study of how
photoionization depends on the angular momentum and
its magnetic substates.

B. Conclusions

We have shown from simulations using new semi-
analytical Keldysh theory including relativistic correc-
tions to the ponderomotive energy [21], that relativistic
corrections become more significant for larger Keldysh
parameter γ, characteristic of the MPI regime. In the
case of large γ and n, photoelectrons can be emitted into

many discrete directions, with no simple angular distri-
bution. The results also show that photoelectron an-
gular distribution is sensitive to the magnetic quantum
number m, which enables us to distinguish the state of
a degenerate atom in different internal magnetic states.
This could be a useful tool to identify the polarization
of the atom by the angular distribution of the photoelec-
tron in the absence of magnetic fields, since the different
magnetic states cannot be distinguished by spectroscopic
data. Circular and elliptic polarizations are new tools in
studying the tunnelling and MPI regimes in intense laser
fields but these have neglected relativistic effects which
we show can be important since they modify the pon-
deromotive energies.
Our results show that relativistic corrections to pon-

deromotive energies, which causes the large energy shifts
of excited states leads to new important physical effects
in strong field physics of atoms. This shows that correc-
tions to the strong field approximation (SFA) models are
already necessary for excited states. Our work points to
a new direction in strong field physics which needs to be
verified next by exact calculations as well as experiments.
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FIG. 2: (Color online) Angular distributions of photoionization from relativistic (left) and nonrelativistic (right) results for
linear and circular polarizations on atom in state n, l,m = 3, 0, 0. The plots are shown for large and small combinations of E0

and ω.
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FIG. 3: (Color online) Angular distribution of photoionization rate for linear polarization with different initial excited atomic
states in level n = 3.
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FIG. 4: (Color online) Angular distribution of photoionization rate for circular polarization with different initial excited atomic
states in level n = 3.



11

FIG. 5: (Color online) Angular distributions of photoionization for linear polarization of the first four states |nlm〉 = |n00〉
(n = 1, 2...4) with: a) γ ∼ 1 b) γ << 1 c) γ >> 1.
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FIG. 6: (Color online) Angular distributions of photoionization for circular polarization of the first four states |nlm〉 = |n00〉
(n = 1, 2...4) with: a) γ ∼ 1 b) γ << 1 c) γ >> 1.
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FIG. 7: (Color online) Angular distribution of photoionization
rate for linear (left) and circular(right) polarizations for initial
excited atom in n = 2, with superposition of states in l =
0, m = 0 and l = 1, m = −1, 0, 1.


